Tailoring Carbon Nanomaterials
for Emerging Applications

presented by

Yuan Chen

Associate Professor
School of Chemical and Biomedical Engineering

23 June 2015 @ R A%

TECHNOLOGICAL
UNIVERSITY




Carbon Materials
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@ The diamond and graphite below 3
are both pure carbon, but they have sp -bonded
different atomic structures. Diamond’s
atoms are tightly linked, giving it
superior hardness. Graphite’s atoms are
arranged in layers that easily slide across
one another, making it soft and greasy.
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Carbon Nanomaterials
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My Research Scope

Fundamental understandings

Nanoscale structures Macroscale architectures Performance evaluations
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 Macroelectronics
» Supercapacitors
Smart textiles

» Electrocatalysts

» Membranes

» Antibacterial coatings
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Synthesis methods Assemblytechniques Application design

Chemical process design and development
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Three Case Studies

« Chirality selective synthesis of single-walled
carbon nanotubes (SWCNTSs)
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Chirality of SWCNTs
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Catalysts in Chemical Vapor Deposition of
SWCNT Synthesis
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Efforts on Chirality Selective Synthesis
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Effect of Carbon Precursors

« Similar chirality distribution can be obtained using different carbon
precursors

 Predominantly in the same high chiral angel region
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Pressure Induced Chirality Selectivity Changes
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Co-TUD-1 Catalyst

« SWCNTs with narrow (n,m) distribution at about 1.2 nm
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CoS0,/SiO, Catalyst
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Sulfur Induced Chirality Selectivity
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Catalysts for Chirality Selective Synthesis of

SWCNTs
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ABSTRACT Activity

The chiral structures of single-walled carbon nanotubes (SWCNTs) can greatly affect their
electronic, optical, thermal, mechanical and magnetic properties. As such, it has been a
long-standing goal to selectively synthesize single chirality SWCNTs for potential applica-
tions ranging from electronics to medicine. Catalytic chemical vapor deposition is the
prevalent method for chirality selective synthesis of SWCNTs. In this method, the catalyic,t

u
plays a critical role in the chirality selection. This review summariﬁlgie -V It
lyst development for chirality selective synthesis of SWCNTs, and tiscusses Hie peneral

principles in current state-of-the-art catalyst designs. Metal catalysts, which account for
the majority of catalysts used so far, are first reviewed. They are divided into supported
catalysts on porous and flat substrates and unsupported catalysts. The discussion is
focused on catalyst preparation methods, which determine the performance of catalysts.
Next, non-metal catalysts are examined. New approaches of using carbon seeds for
SWCNT “cloning” are also summarized. Lastly, nanocarbon segments obtained from
organic synthesis for SWCNT growth are discussed.

© 2014 Elsevier Ltd. All rights reserved.
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Three Case Studies

« Assembly of carbon nanotube/graphene hybrid
carbon fibers for fiber supercapacitors
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Carbon Based Electrodes/Electro-Catalysts
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Emergence of Fiber Supercapacitors

ROYAL SOCIETY
OF CHEMISTRY

Chem Soc Rev

TUTORIAL REVIEW PSS Sas

CrossMark Emergence of fiber supercapacitors

€dick for updates

Dingshan Yu,? Qihui Qian,” Li Wei,” Wenchao Jiang,? Kunli Goh,? Jun Wei,”

Cite this: DOI: 10.1039/c4cs00286e ] - S
Jie Zhang~ and Yuan Chen*

Supercapacitors (SCs) are energy storage devices which have high power density and long cycle life.
Conventional SCs have two-dimensional planar structures. As a new family of SCs, fiber SCs utilize one-
dimensional cylindrically shaped fibers as electrodes. They have attracted significant interest since 2011
and have shown great application potential either as micro-scale devices to complement or even replace
micro-batteries in miniaturized electronics and microelectromechanical systems or as macro-scale
devices for wearable electronics or smart textiles. This tutorial review provides an essential introduction to
this new field. We first introduce the basics of performance evaluation for fiber SCs as a foundation to
understand different research approaches and the diverse performance metrics reported in the literature.

Received 28th August 2014 Next, we summarize the current state-of-the-art progress in structure design and electrode fabrication

DOI: 10.1039/c4cs00286e of fiber SCs. This is followed by a discussion on the integration of multiple fiber SCs and the combination
with other energy harvesting or storage devices. Last, we present our perspectives on the future development

www.rsc.org/csr of fiber SCs and highlight key technical challenges with the hope of stimulating further research progress.
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Emergence of Fiber Supercapacitors
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Synthesis of Carbon Composites

Graphene oxide sheets
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Synthesis of Carbon Hybrid Fibers
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3D Composite Confined within 1D Fiber
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All-Solid-State Flexible Fiber Capacitors
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Integration in a Self-Powered Nanosystem
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Controlled Functionalization of Carbon Hyrbid
Fibers
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Asymmetric Solid-State Micro-Supercapacitors
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Three Case Studies

« Antibacterial activity of carbon nanotubes and
graphene
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Dispersed SWCNTs Kill More Bacteria
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Atomic Force Microscopic Study of Cells

AFM amplitude images of (A) E. coliand (B) E. coli after piercing by a 2
nm AFM tip for 200 times at different locations.

SWCNTs dispersed in solution cannot induce large forces (> 10 nN)

29 Nanoscale, 2010, 2, 2744
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Group Attacks on Cells

(A) Untreated

Height, nm

(D) - 120mins

The antibacterial activity of SWCNTs is the accumulation effect of large amount of
nanotubes through interactions between SWCNT networks and bacterial cells.
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Antibacterial Activity of Graphene Based Materials

Antibacterial activity Oxidative stress
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Size Effect on Antibacterial Activity of GO
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Exploring Potential Antibacterial Applications
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